Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.164
Filtrar
1.
J Environ Manage ; 357: 120851, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581894

RESUMEN

Conventional liquid treatments for large-scale, low-level radioactive wastewater, such as ion exchange and waste solidification, face challenges due to the large amounts of secondary waste and high disposal costs. A new large-scale decontamination method is proposed that uses kapok fiber composites for rapid radionuclide adsorption and high volume reduction to minimize secondary waste. The composite consists of natural zeolite and kapok holocellulose, which has high water-soaking ability and low-temperature pyrolysis. The kapok composites, fabricated using a commercial wet-laid nonwoven manufacturing process, absorbs 99% of low-level radioactive cesium in 20 min, reducing the volume by 98% and the weight by 47% at 300 °C. The low-temperature pyrolysis process below 300 °C prevents cesium desorption and gasification by avoiding zeolite destruction. The mass-producible kapok composites can be used for adsorbing various radionuclides in large-scale wastewater by attaching specific adsorbents for target isotopes to the composites.


Asunto(s)
Residuos Radiactivos , Zeolitas , Aguas Residuales , Cesio , Radioisótopos , Adsorción , Residuos Radiactivos/prevención & control
2.
J Environ Manage ; 356: 120616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518493

RESUMEN

Metakaolin-based geopolymers are very promising materials for improving the safety of low and intermediate level radioactive waste disposal, with respect to ordinary Portland cement, due to their excellent immobilization performance for Cs+ and superior chemical stability. However, their application is limited by the fact that the leaching behavior of Cs+ is susceptible to the presence of other ions in the environment. Here, we propose a way to modify a geopolymer using perfluorodecyltriethoxysilane (PDFS), successfully reducing the leaching rate of Cs+ in the presence of multiple competitive cations due to blocking the diffusion of water. The leachability index of the modified samples in deionized water and highly concentrated saline water reached 11.0 and 8.0, respectively. The reaction mechanism between PDFS and geopolymers was systematically investigated by characterizing the microstructure and chemical bonding of the material. This work provides a facile and successful approach to improve the immobilization of Cs ions by geopolymers in real complex environments, and it could be extended to further improve the reliability of geopolymers used in a range of applications.


Asunto(s)
Residuos Radiactivos , Eliminación de Residuos , Reproducibilidad de los Resultados , Polímeros , Eliminación de Residuos/métodos , Iones
3.
J Environ Manage ; 356: 120712, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531127

RESUMEN

This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management.


Asunto(s)
Residuos Radiactivos , Administración de Residuos , Administración de Residuos/métodos , Residuos Peligrosos
4.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458234

RESUMEN

AIMS: Many countries are in the process of designing a deep geological repository (DGR) for long-term storage of used nuclear fuel. For several designs, used fuel containers will be placed belowground, with emplacement tunnels being backfilled using a combination of highly compacted powdered bentonite clay buffer boxes surrounded by a granulated "gapfill" bentonite. To limit the potential for microbiologically influenced corrosion of used fuel containers, identifying conditions that suppress microbial growth is critical for sustainable DGR design. This study investigated microbial communities in powdered and gapfill bentonite clay incubated in oxic pressure vessels at dry densities between 1.1 g cm-3 (i.e. below repository target) and 1.6 g cm-3 (i.e. at or above repository target) as a 1-year time series. RESULTS: Our results showed an initial (i.e. 1 month) increase in the abundance of culturable heterotrophs associated with all dry densities <1.6 g cm-3, which reveals growth during transient low-pressure conditions associated with the bentonite saturation process. Following saturation, culturable heterotroph abundances decreased to those of starting material by the 6-month time point for all 1.4 and 1.6 g cm-3 pressure vessels, and the most probable numbers of culturable sulfate-reducing bacteria (SRB) remained constant for all vessels and time points. The 16S rRNA gene sequencing results showed a change in microbial community composition from the starting material to the 1-month time point, after which time most samples were dominated by sequences associated with Pseudomonas, Bacillus, Cupriavidus, and Streptomyces. Similar taxa were identified as dominant members of the culture-based community composition, demonstrating that the dominant members of the clay microbial communities are viable. Members of the spore-forming Desulfosporosinus genus were the dominant SRB for both clay and culture profiles. CONCLUSIONS: After initial microbial growth while bentonite was below target pressure in the early phases of saturation, microbial growth in pressure vessels with dry densities of at least 1.4 g cm-3 was eventually suppressed as bentonite neared saturation.


Asunto(s)
Bentonita , Residuos Radiactivos , Residuos Radiactivos/análisis , Arcilla , ARN Ribosómico 16S/genética
5.
J Contam Hydrol ; 262: 104309, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308940

RESUMEN

The high-level nuclear waste, HLW, from Swedish and Finnish reactors will be deposited in crystalline rock at depths around 500 m. The waste is enclosed in steel canisters protected against corrosion by a 5 cm thick copper shell, which ensures a lifetime far longer than 100 000 years. Should some canister be breached any leaking nuclides will have decayed to so low activity that even if they reached the biosphere, they would cause minimal risk to humans. The cost of the copper is significant. The dismantling of the nuclear reactors, with induced activity must also be disposed of and this waste volume is much larger than that of the HLW, which makes it impossible to protect it in the same way. This paper explores if by locating the waste at larger depth where the ground water is more saline, and where the hydraulic conductivity of the rock is lower up-flow of contaminated water can be ensured to be negligible because the denser water at larger depth counteracts up-flow due to negative buoyancy. Several processes that could cause local up-flow are addressed, such as infiltration of meteoric water, impact of surface topology, heat production of the waste, geothermal gradient, salinity gradient, hydraulic conductivity heterogeneities and salt migration between seeping water and salt in matrix pore water. Flow and transport simulations using data from extensive field investigations over more than ten years with scores of km deep boreholes suggest that a HLW repository at around one km depth may be sufficient to hinder up-flow to the biosphere.


Asunto(s)
Agua Subterránea , Residuos Radiactivos , Humanos , Modelos Teóricos , Cobre , Agua Subterránea/química , Radioisótopos , Residuos Radiactivos/análisis , Agua
6.
Chemosphere ; 352: 141462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364923

RESUMEN

The migration and retention of radioactive contaminants such as 137Cesium (137Cs) in various environmental media pose significant long-term storage challenges for nuclear waste. The distribution coefficient (Kd) is a critical parameter for assessing the mobility of radioactive contaminants and is influenced by various environmental conditions. This study presents machine-learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict the Kd values for Cs in solid phase groups. We used three different machine learning models: random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN). The models were trained on 14 input variables from the JAEA-SDB, including factors such as the Cs concentration, solid-phase properties, and solution conditions, which were preprocessed by normalization and log-transformation. The performances of the models were evaluated using the coefficient of determination (R2) and root mean squared error (RMSE). The RF, ANN, and CNN models achieved R2 values greater than 0.97, 0.86, and 0.88, respectively. We also analyzed the variable importance of RF using an out-of-bag (OOB) and a CNN with an attention module. Our results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. Our models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and long-term risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.


Asunto(s)
Cesio , Residuos Radiactivos , Cesio/análisis , Radioisótopos de Cesio/análisis , Residuos Radiactivos/análisis , Japón
7.
Radiat Environ Biophys ; 63(1): 1-6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367061

RESUMEN

This report summarizes the findings of a workshop held at the safeND Research Symposium and hosted by the German Federal Office for the Safety of Radioactive Waste Management (BASE) in Berlin in September 2023. The workshop aimed to channel perspectives from various fields of expertise to discuss key sustainability concepts in terms of radioactive waste management. Therefore, the report highlights that current sustainability concepts, such as the United Nations' Sustainable Development Goals (SDG) as well as the concept of Planetary Boundaries, neglect challenges arising from the production and storage of human-made radioactive materials. The workshop consisted of three group tasks. The first attempted at identifying the interrelations between "sustainability" and radioactive waste management. The second was to map the global nature of the challenges. The third took first steps to determine a human-made radioactive material as a potential planetary sub-boundary for "novel entities". All three groups identified valuable knowledge gaps that should be addressed by future research and concluded that radioactive waste management is underrepresented in these sustainability concepts.


Asunto(s)
Residuos Radiactivos , Administración de Residuos , Humanos
8.
Int J Biol Macromol ; 260(Pt 2): 129690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266855

RESUMEN

Radioactive iodine is considered one of the most dangerous radioactive elements in nuclear waste. Therefore, effective capture of radioactive iodine is essential for developing and using nuclear energy to solve the energy crisis. Some materials that have been developed for removing radioactive iodine still suffer from complex synthesis, low removal capacity, and non-reusability. Herein, covalent organic framework (COF)/chitosan (CS) aerogels were prepared using vacuum freeze-drying, and the COF nanoparticles were tightly attached on the green biomass material CS networks. Due to the synergistic effect of both COF and CS, the composite aerogel shows a three-dimensional porous and stable structure in the recycle usage. The COF/CS aerogel exhibits excellent iodine adsorption capacity of 2211.58 mg g-1 and 5.62 g g-1 for static iodine solution and iodine vapor, respectively, better than some common adsorbents. Furthermore, COF/CS aerogel demonstrated good recyclability performance with 87 % of the initial adsorption capacity after 5 cycles. In addition, the interaction between iodine and imine groups, amino groups, and benzene rings of aerogel are the possible adsorption mechanisms. COF/CS aerogel has excellent adsorption properties, good chemical stability, and reusable performance, which is a potential and efficient adsorbent for industrial radioactive iodine adsorption from nuclear waste.


Asunto(s)
Quitosano , Yodo , Estructuras Metalorgánicas , Residuos Radiactivos , Neoplasias de la Tiroides , Humanos , Adsorción , Radioisótopos de Yodo
9.
Sci Total Environ ; 915: 170149, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242445

RESUMEN

Deep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.


Asunto(s)
Bentonita , Residuos Radiactivos , Bentonita/química , Residuos Radiactivos/análisis , Cobre , Corrosión , Temperatura , Sulfatos , Lactatos , Acetatos
10.
Sci Rep ; 14(1): 1021, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200072

RESUMEN

Legacy radioactive waste can be defined as the radioactive waste produced during the infancy of the civil nuclear industry's development in the mid-20th Century, a time when, unfortunately, waste storage and treatment were not well planned. The marine environment is one of the environmental compartments worth studying in this regard because of legacy waste in specific locations of the seabed. Comprising nearly 70% of the earth's service, the oceans are the largest and indeed the final destination for contaminated fresh waters. For this reason, long-term studies of the accumulation biochemical mechanisms of metallic radionuclides in the marine ecosystem are required. In this context the brown algal compartment may be ecologically relevant because of forming large and dense algal beds in coastal areas and potential important biomass for contamination. This report presents the first step in the investigation of uranium (U, an element used in the nuclear cycle) bioaccumulation in the brown alga Ascophyllum nodosum using a multi-scale spectroscopic and imaging approach. Contamination of A. nodosum specimens in closed aquaria at 13 °C was performed with a defined quantity of U(VI) (10-5 M). The living algal uptake was quantified by ICP-MS and a localization study in the various algal compartments was carried out by combining electronic microscopy imaging (SEM), X-ray Absorption spectroscopy (XAS) and micro X-ray Florescence (µ-XRF). Data indicate that the brown alga is able to concentrate U(VI) by an active bioaccumulation mechanism, reaching an equilibrium state after 200 h of daily contamination. A comparison between living organisms and dry biomass confirms a stress-response process in the former, with an average bioaccumulation factor (BAF) of 10 ± 2 for living specimens (90% lower compared to dry biomass, 142 ± 5). Also, these results open new perspectives for a potential use of A. nodosum dry biomass as uranium biosorbent. The different partial BAFs (bioaccumulation factors) range from 3 (for thallus) to 49 (for receptacles) leading to a compartmentalization of uranium within the seaweed. This reveals a higher accumulation capacity in the receptacles, the algal reproductive parts. SEM images highlight the different tissue distributions among the compartments with a superficial absorption in the thallus and lateral branches and several hotspots in the oospheres of the female individuals. A preliminary speciation XAS analysis identified a distinct U speciation in the gametes-containing receptacles as a pseudo-autunite phosphate phase. Similarly, XAS measurements on the lateral branches (XANES) were not conclusive with regards to the occurrence of an alginate-U complex in these tissues. Nonetheless, the hypothesis that alginate may play a role in the speciation of U in the algal thallus tissues is still under consideration.


Asunto(s)
Ascophyllum , Residuos Radiactivos , Uranio , Humanos , Femenino , Bioacumulación , Ecosistema , Espectroscopía de Absorción de Rayos X , Alginatos
11.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216518

RESUMEN

The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.


Asunto(s)
Microbiología Ambiental , Ambientes Extremos , Residuos Radiactivos , Residuos Radiactivos/análisis
12.
Environ Sci Pollut Res Int ; 31(2): 2419-2436, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063959

RESUMEN

The use of phyllite (Phy) instead of quartz in mixtures with bentonite (B) is recommended as a buffer material for engineering barriers in a geological repository of nuclear waste. The recommendation is based on experimentally determined sorption properties of various Phy/B mixtures. The adsorption capacity of Phy/B mixtures (Phy/B: 75/25, 50/50, and 25/75), the removal efficacy of Eu(III) ions (an analog for fissiongenic lanthanides and actinides), and the rate of their binding reaction were studied using the batch adsorption equilibrium and kinetic experiments at different Eu(III) initial concentrations, solution pH, and solution to adsorbent (L/S) ratio. The adsorption capacity of the Phy/B mixtures increased with the increased bentonite content in the mixture depending on the L/S ratio and solution pH. The highest increase in the adsorption capacity of the Phy/B mixtures compared to phyllite was observed for the Phy/B proportions of 25/75 and 50/50. The rate of the Eu(III) adsorption was the best fitted by the pseudo-second-order kinetic model indicating that the adsorption rate was controlled by chemisorption. The Sips model provided the best correlation of the adsorption experimental data, indicative of more than one adsorption site. The results of this study show the advantage of the Phy/B mixtures in immobilizing Eu and certain fission products by combining adsorption properties of the materials.


Asunto(s)
Residuos Radiactivos , Contaminantes Químicos del Agua , Bentonita/química , Adsorción , Cuarzo , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 912: 169242, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072256

RESUMEN

Research on eco-friendly bioremediation strategies for mitigating the environmental impact of toxic metals has gained attention in the last years. Among all promising solutions, bentonite clays, to be used as artificial barriers to isolate radioactive wastes within the deep geological repository (DGR) concept, have emerged as effective reservoir of microorganisms with remarkable bioremediation potential. The present study aims to investigate the impact of bentonite fungi in the speciation and mobility of selenium (Se) and tellurium (Te), as natural analogues 79Se and 132Te present in radioactive waste, to screen for those strains with bioremediation potential within the context of DGR. For this purpose, a multidisciplinary approach combining microbiology, biochemistry, and microscopy was performed. Notably, Aspergillus sp. 3A demonstrated a high tolerance to Te(IV) and Se(IV), as evidenced by minimal inhibitory concentrations of >16 and >32 mM, respectively, along with high tolerance indexes. The high metalloid tolerance of Aspergillus sp. 3A is mediated by its capability to reduce these mobile and toxic elements to their elemental less soluble forms [Te(0) and Se(0)], forming nanostructures of various morphologies. Advanced electron microscopy techniques revealed intracellular Te(0) manifesting as amorphous needle-like nanoparticles and extracellular Te(0) forming substantial microspheres and irregular accumulations, characterized by a trigonal crystalline phase. Similarly, Se(0) exhibited a diverse array of morphologies, including hexagonal, irregular, and needle-shaped structures, accompanied by a monoclinic crystalline phase. The formation of less mobile Te(0) and Se(0) nanostructures through novel and environmentally friendly processes by Aspergillus sp. 3A suggests it would be an excellent candidate for bioremediation in contaminated environments, such as the vicinity of deep geological repositories. It moreover holds immense potential for the recovery and synthesis of Te and Se nanostructures for use in numerous biotechnological and biomedical applications.


Asunto(s)
Residuos Radiactivos , Selenio , Selenio/química , Telurio , Bentonita , Biodegradación Ambiental
14.
Environ Sci Pollut Res Int ; 31(2): 2732-2744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066266

RESUMEN

The crystalline phase of molybdenum titanium tungsto-phosphate (MoTiWPO4) as an inorganic sorbent material was synthesized via the sol-gel method. The physicochemical characteristics of MoTiWPO4 were evaluated by using Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX), thermal analysis (TGA-DTA), and X-ray diffraction (XRD). MoTiWPO4 sorbent material exhibits a high chemical resistance to HNO3, HCl, and alkaline media. MoTiWPO4 has good thermal stability as it retained about 75.63% of its saturation capacity upon heating at 500 °C. The sorption studies for several metal ions revealed marked high sorption efficiency of MoTiWPO4 towards Cs+ and Sr2+ ions which reached 99% and 95%, respectively. The saturation capacity of MoTiWPO4 for Cs+ and Sr2+ is 113 and 109 mg/g, respectively. MoTiWPO4 is approved to be successfully eliminating both 137Cs and 85Sr from liquid radioactive waste streams by %eff. of 92.5 and 90.3, respectively, in the presence of competing ions from 60Co(divalent) and 152Eu (trivalent), confirming the batch experiment results for the removal of Cs+ and Sr2+ metal ions. Furthermore, the decontamination factor exceeds 13.3 in the case of 137Cs and 10.3 for 85Sr.


Asunto(s)
Radioisótopos de Cesio , Residuos Radiactivos , Molibdeno , Titanio , Descontaminación , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Iones , Fosfatos
15.
Chemosphere ; 350: 141050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154672

RESUMEN

At present, the deep geological repository concept for spent nuclear fuel is considered the most reliable and safe technique for the permanent disposal of this type of waste. One of the many safety elements used is an engineered barrier made of compacted bentonite. This material allows the encapsulated waste to be isolated from the host rock. Therefore, there is great interest in a detailed study of the behavior of bentonites to different changes in the composition of the surrounding groundwater. In this context, this work presents a new reactive transport model for bentonites implemented in the COMSOL Multiphysics platform. The model contemplates a non-simplistic geochemical system composed of 42 species and 4 minerals. Reactive transport involves the diffusive-dispersive-advective processes defined by the Nernst Planck equations for two overlapping modeling levels (macro- and microstructural) to simulate the behavior of double-porosity media. The uniqueness of this model is that the system of equations used to calculate the chemical speciation problem and the advective-diffusive-dispersive transport can be integrally solved in COMSOL. The model has been satisfactorily verified and validated using the benchmark exercise consisting of the simulation of the multicomponent advective-diffusive column experiment conducted on a compacted bentonite core extracted from a field experiment (LOT project) in the Äspö Hardrock laboratory (Sweden).


Asunto(s)
Bentonita , Residuos Radiactivos , Bentonita/química , Benchmarking , Porosidad , Simulación por Computador , Suecia , Modelos Teóricos
16.
World J Microbiol Biotechnol ; 40(1): 41, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071262

RESUMEN

As bentonite hosts a diverse spectrum of indigenous microorganisms with the potential to influence the long-term stability of deep geological repositories, it is essential to understand the factors influencing microbial activity under repository conditions. Here, we focus on two factors, i.e., temperature and swelling pressure, using a suspension of Cerny Vrch bentonite to boost microbial activity and evaluate microbial response. Suspensions were exposed either to different pressures (10, 12 and 15 MPa; to simulate the effect of swelling pressure) or elevated temperatures (60, 70, 80 and 90 °C; to simulate the effect of cannister heating) for four weeks. Each treatment was followed by a period of anaerobic incubation at atmospheric pressure/laboratory temperature to assess microbial recovery after treatment. Microbial load and community structure were then estimated using molecular-genetic methods, with presence of living cells confirmed through microscopic analysis. Our study demonstrated that discrete application of pressure did not influence on overall microbial activity or proliferation, implying that pressure evolution during bentonite swelling is not the critical factor responsible for microbial suppression in saturated bentonites. However, pressure treatment caused significant shifts in microbial community structure. We also demonstrated that microbial activity decreased with increasing temperature, and that heat treatment strongly influenced bentonite microbial community structure, with several thermophilic taxa identified. A temperature of 90 °C proved to be limiting for microbial activity and proliferation in all bentonite suspensions. Our study emphasizes the crucial role of a deep understanding of microbial activity under repository-relevant conditions in identifying possible strategies to mitigate the microbial potential within the deep geological repository and increase its long-term stability and safety.


Asunto(s)
Bentonita , Residuos Radiactivos , Bentonita/análisis , Bentonita/química , Residuos Radiactivos/análisis , Temperatura , Fenómenos Químicos , Proliferación Celular
17.
Radiat Prot Dosimetry ; 199(18): 2262-2268, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37934999

RESUMEN

Two outstanding phenomena have taken place in earlier geological era where Gabon is now located: the presence of natural nuclear reactors and the appearance of a very elaborated form of life for its age. Calculations performed to establish the sustained fission history of Oklo site are presented first. Second, possible correlations between these two anomalies are discussed. Could the presence of ionizing radiation be the cause of genetic mutations? Today's isotopic measurements allow us to improve our understanding of the irradiation suffered by organic matter over all times. The first objective is therefore to quantify the possible effects of such ionizing radiation. A second objective naturally appears: the storage of radioactive waste. Calculations issued from the first objective provide access to nuclear reactor waste formations and Oklo is the unique natural analogue of a long-term storage laboratory for nuclear waste. Returning to our primary objective, it is interesting to extend our reflections to other situations of naturally radioactive environments such as very old geological formations or lagoon.


Asunto(s)
Reactores Nucleares , Residuos Radiactivos , Gabón
18.
J Radiol Prot ; 43(4)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37797613

RESUMEN

A method for reconstructing surface activity density (SAD) maps based on the solution of the Fredholm equation has been developed and applied. The construction of SAD maps was carried out for the site of the temporary storage (STS) of spent fuel and radioactive waste (RW) in Andreeva Bay using the results of measuring campaign in 2001-2002 and for the sheltering construction of the solid RW using the results of measurements in 2021. The Fredholm equation was solved in two versions: under conditions of a barrier-free environment and taking into account buildings and structures located on the industrial site of the STS Andreeva Bay. Lorenz curves were generated to assess the compactness of the distributions of SAD and ambient dose equivalent rate (ADER) for the industrial site and the sheltering construction at STS Andreeva Bay, the area of the IV stage uranium tailing site near the city of Istiklol in the Republic of Tajikistan, and for roofs of the Chernobyl nuclear power plant. The nature of impact of the resolution (fragmentation) of the raster, the value of the radius of mutual influence of points (contamination sites), the height of the radiation detector above the scanned surface and the angular aperture of the radiation detector on the accuracy of the SAD reconstruction is shown. The method developed allows more accurate planning of decontamination work when only ADER measurements data is available. The proposed method can be applied to support the process of decontamination of radioactively contaminated territories, in particular during the remediation of the STS Andreeva Bay.


Asunto(s)
Accidente Nuclear de Chernóbil , Monitoreo de Radiación , Residuos Radiactivos , Bahías , Monitoreo de Radiación/métodos , Residuos Radiactivos/análisis , Radioisótopos
19.
Extremophiles ; 27(3): 27, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839067

RESUMEN

Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.


Asunto(s)
Extremófilos , Residuos Radiactivos , Eliminación de Residuos , Residuos Radiactivos/análisis
20.
J Environ Radioact ; 270: 107302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839155

RESUMEN

Climate factors from different regions were employed to assess the impact on Biosphere Dose Conversion Factors (BDCF) in the biosphere assessment of radioactive waste disposal. Climate characteristics of tropical and subtropical regions were considered alongside diverse climatic regions, observing the influence of different radionuclides. Data on annual rainfall, monthly rainfall distribution, temperature, and sunlight were collected for various regions. The relationship between rainfall and the processes of flooding, as well as erosion, was also established. Furthermore, the Water Budget Model (WBM) was used to calculate the required surface water flow parameters for the biosphere model. The results indicated limited effects from flooding and erosion, which could be evaluated using simplified methods. Under conditions of high evapotranspiration, low rainfall, or uneven rainfall distribution, specific radionuclides exhibited higher BDCF values. For regions currently and prospectively aligning with these climate characteristics, a comprehensive investigation into climate factors and their correlation with surface and near-surface hydrology is recommended to mitigate uncertainty.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Eliminación de Residuos , Eliminación de Residuos/métodos , Radioisótopos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...